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INTRODUCTION
Mochizuki’s Inter-Universal Teichmüller theory (IUT) has been developed with the goal of providing
a deeper understanding of the abc-conjecture– for every 𝜀 > 0, the relation rad(𝑎𝑏𝑐)1+𝜀 < 𝑐 has only
finitely many solutions for coprime integers (𝑎, 𝑏, 𝑐) ∈ N>0 such that 𝑎 + 𝑏 = 𝑐 (abc). This conjecture,
that is deeply rooted in arithmetic geometry, is to be understood as a certain rigidity property on
the intertwining of the multiplicative and additive monoid structures of (N>0,⊞,⊠), whose estimate is
hidden within the many isomorphic identifications used in arithmetic and Diophantine geometry.

The seminal achievement of Mochizuki’s IUT is to provide a new geometry that brings an estimate of
the (abc) rigidity property within reach. IUT theory is a geometry of the moduli stack of elliptic curves
ℳ1,1 whose 𝐾-points are endowed with certain rigid Diophantine arithmetic line bundle invariants
with place-wise compatible arithmetic and geometric symmetries, and that are embedded in various
types of non-rigid anabelian étale containers. The consideration of rings/schemes and fields in terms of
mono-anabelian geometry and up-to some indeterminacies, for example at nonarchimedean places of 𝐾s,
as abstract ⊞⇑⊠-monoids, allows the decoupling of their ⊞⇑⊠-monoids structures. This deconstruction-
reconstruction process – or Fukugen 復元 , relies on the non (mono) anabelianity of sub-𝑝-adic fields and
allows to track the isomorphic identifications of ring structures, which in turns provides an abc-estimate
at the level of heights of line bundles.

This theory relies on a 20-year work of Mochizuki in anabelian geometry, Hodge-Arakelov and 𝑝-adic
Teichmüller theories. The various aspects involved – mono-anabelian transport of rigid properties,
Diophantine invariants in anabelian geometry, categorical constructions, structures deformations – will
appeal to as many arithmetic geometers.

The goal of this seminar is to give access to non-experts to techniques and insights of IUT by starting
with the illustration of seminal principles and theories on which relies the work of Mochizuki. It is our
hope that this approach will provide the participants (1) with the necessary keys for the practice of
IUT theory, (2) with a guide towards the appreciation of Mochizuki’s proof of the abc-conjecture, and
(3) for further ramifications of IUT within their own field of research.

Acknowledgement. The organizer BC would like to express his gratitude to Shinichi Mochizuki for regular
meetings and discussions during which he could properly be introduced to the insights, techniques and future
developments of IUT. He also thanks Emmanuel Lepage and Arata Minamide for sharing their understanding
of the theory, and Yuichiro Hoshi and Shota Tsujimura whose corrections led to a finer version of these notes.
The first organizer benefited from the support of Akio Tamagawa and the hospitality of RIMS Kyoto University
during the preparation of this seminar.
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“Progress in mathematics is [...] a much more complicated
family tree [...], a much more complicated organism, [...]
whose growth is sustained by an intricate mechanism of
interaction among a vast multitude of branches, some of
which sprout not from branches of relatively recent vintage,
but rather from much older, more ancestral branches of the
organism that were entirely irrelevant to the recent growth
of the organism.”

S. Mochizuki (2011)

As a model for culture, the rhizome resists the organizational
structure of the root-tree system which charts causality along
chronological lines [...]; A rhizome is characterized by “cease-
lessly established connections between semiotic chains, organiza-
tions of power, and circumstances relative to the arts, sciences,
and social struggles.” The rhizome presents history and culture
as a map or wide array of attractions and influences with no
specific origin or genesis.

From G. Deleuze, F. Guittari (1983)

CONTENTS
PROGRAMME 3

Speakers & Talks • Modus Operandi & Leitfaden • Inter-Universal Teichmüller theory (1991 -
2012 - 2020 - . . . ).
Introductory & Main References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Topic 1 - Diophantine Geometry: Heights, abc and Vojta Conjectures . . . . . . . . 5
Talk 1.1 - Abc & Szpiro Conjectures, Roth’s Theorem and Belyi . . . . . . . . . . . . . . . . . . . . 5
Abc-Roth: Diophantine Approximation • Abc-Szpiro: Reduction for Elliptic Curves.
Talk 1.2 - Abc & Vojta conjectures: Heights and Ramification . . . . . . . . . . . . . . . . . . . . . . 6
Talk 1.3 - From Vojta to Mochizuki: Moduli Spaces of Elliptic Curves . . . . . . . . . . . . . . . . 6
Faltings: Towards Anabelian Geometry • A Global Multiplicative Subspace • Two steps towards
IUT Geometry.
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Topic 2 - Inter-Universal Teichmüller Geometry . . . . . . . . . . . . . . . . . . . . . 8
Talk 2.1 - Θ±𝑒𝑙𝑙NF-Hodge Theaters: An Apparatus for Global Multiplicative Subspaces . . 8
Prime Strips • The Θ±ellNF-Hodge Theaters and Symmetries • The Log-theta-lattice of Hodge
Theaters.
Talk 2.2 - Cyclotomic Rigidity and Multiradiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Rigidity via Brauer and 𝜅-coric functions • Theta-function as Symmetric Line Bundle • The
Mono-theta Environment • Cyclotomic Rigidity and Multiradiality.
Talk 2.3 - Log-Theta Lattice: Symmetries and Indeterminacies. . . . . . . . . . . . . . . . . . . . . . 15
Three Kinds of Indeterminacies on Log-Shells & Multiradiality • The Main Multiradial Algorithm:
Log-theta Wandering.
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Topic 3 - Anabelian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Talk 3.1 - Relative Bi-Anabelian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
GC for Hyperbolic Curves • Towards Mono-Anabelian Results.
Talk 3.2 - Tempered Anabelian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Combinatorial Anabelian Geometry • Tempered & Pro-conjugate.
Talk 3.3 - IUT Absolute Mono-Anabelian Reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . 19
Hidden Endomorphisms and Elliptic or Belyi Cuspidalisation • Absolute mono-anabelian recon-
structions (1) • Absolute mono-anabelian reconstructions (2).
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Topic 4 - Advanced Talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ATA - Mono-anabelian Transport in Inter-universal Teichmüller Theory (Y. Hoshi) . . . . . 21
ATB - Explicit Estimates in Inter-universal Teichmüller Theory (S. Minamide) . . . . . . . . . 21
ATC - An Introduction to 𝑝-adic Teichmüller Theory (Y. Wakabayashi) . . . . . . . . . . . . . . 21
Interactive Q&A - Inter-Universal Teichmüller Theory (S. Mochizuki) . . . . . . . . . . . . . . . . 22

ORGANIZATION AND SCHEDULE 23
Talks and Speakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
List of Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

※ In order to keep the length of this guide (incl. ∼ 25 tables, figures, and diagrams) strictly shorter than the IUT corpus
– ∼ 1200 pages with a piece of anabelian geometry, ∼ 675 pages for the canon, and ∼ 170 pages for the introductory [Alien]
– some details have been omitted, some approximations were made; they should be negligible for our goal. Content will be
updated according to the progress of the seminar, see version and date.

2/26 Version 1 − 𝜀 - 04/19/2021



2020-2021 RIMS Kyoto University - Lille University

PROGRAMME

The following programme is intended for non-experts and young researchers in arithmetic geometry,
with the goal to serve as a guide towards a general understanding of results, insights and techniques of
Inter-Universal Teichmüller theory. The organization around three topics – Diophantine Geometry,
Inter-Universal Geometry, and Anabelian Geometry – emphasizes the grounding of IUT into classical
arithmetic-geometry theories, which in return serve as many bridges towards IUT’s new insights.

Speakers & Talks. Each speaker will freely determine the balance between expository and technicity,
decide on which material to develop – from elementary to advanced topics, and whether or not to focus
on complements. At least 30 minutes should be spent for contextualizing the talk with respect to the
programme; A specific effort will be given (1) on a rigorous presentation of elementary notions, and
(2) on the use of examples and diagrams to support the presentation.

Speakers should feel free to contact the organizers for informal discussions during their preparation
and for access to (additional) references. The Talk numbering is no indication of any chronological
ordering, except for Talk 0 that will give a general overview of each topic – see §Talks and Speakers.

Modus Operandi & Leitfaden. As a new geometry, the essence of Mochizuki’s IUT is to introduce
a new semiotic system – formalism, terminology, and their interactions – that can be unsettling at first.
This programme proposes a 3 layers approach with precise references, examples, and analogies.

Because IUT discovery also benefits from a non-linear and spiralling approach, we provide further
indications for an independent wandering: Mochizuki recommends to start with the introductory [Alien] –
young arithmetic-geometers can also consult [Fes15] for a shorter overview. We also recommend to begin
with §Intro - §3.6-7 ibid. for a direct encounter with IUT’s semiotic, then to follow one’s own topics of in-

Fig. 1. IUT, Topics & References as poten-
tial entry points.

● Diophantine: Heights, Faltings’ isogenies
& Abc.
● Anabelian: Mono-anabelian reconstruc-
tion & Tripodal transports.
● Geometry: Multiradiality, Coricity &
Arithmetic Analyticity vs Holomorphicity.
● Categorical: Frobenioids, Anabelioid,
Prime Strips & Hodge Theaters.
● Meta-Abelian Theta: Mumford’s abelian
constructions & Kummer theory.

※ We have also found the synthetic and self-
content [Yam17] to be particularly helpful as
a bridge between [Alien] and the “canon”.

terest according to Fig. 1, which also indicates some topic-wise references as entry-points – [EtTh],
[GenEll], etc. Within the “canon” [IUTChI]-[IUTChIV], our recommendation is to start with [IUTChIII]
§Introduction. Intuition of the reader can further rely on the strongly consistent terminology of IUT –
e.g. Frobenioid, mono-anabelian transport, arithmetic analytic.

※ Hodge-Arakelov and 𝑝-adic Teichmüller theories stand as important models for IUT, which also relies on key
categorical constructions – e.g. Frobenioids and anabelioids. These aspects are not included in this programme
– we refer to [Alien] and the canon for references – they can be the object of additional talks by specialists.
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Inter-Universal Teichmüller theory (1991 - 2012 - 2020 - . . . ) One needs to recall that IUT
is the abutment of a 20-years research programme – involving 𝑝-adic Teichmüller, Hodge-Arakelov, and
absolute/combinatorial/mono-anabelian geometry theories – that Mochizuki started during his PhD in
Princeton 1991. After a 6-years private seminar organized by Sh. Mochizuki and F. Kato (July 2005 -
March 2011)), the “canon” of the theory was publicly released in 2012 – see [Fes15] §1.4 and §3.1 – to
be finally accepted for publication in Kyoto’s Publication of the Research Institute for Mathematical
Sciences on April 4, 2020.

In between, IUT has been learned and used inside and, independently, outside the Japanese Mathematics
community. As a new geometry, it gives access to new invariants, symmetries and principles, that will
certainly be recognized and thus appeal to both Diophantine and anabelian geometers – among others:
(1) the symmetric gluing of prime and geometric cusps of Talk 2.1, (2) the arithmetic properties of
Galois representations with big image in relation with Talk 1.3, and (3) the embedding of Frobenius-like
(local) objects in (global) étale-like and Galois-deformable ones of Talk 2.3.

The now very active international community of IUT geometers will meet for a special 2021 “Expanding
Horizons of Inter-universal Teichmüller theory” semester in Kyoto, where the latest results surrounding
IUT (anabelian geometry, Grothendieck-Teichmüller theory, abc-type) will be announced and discussed.

※ Professor Mochizuki will give an IUT talk at the Berkeley Mathematical Colloquium by Zoom on Thursday
Nov. 5th, 2020 at 4:10pm to 5:00pm (PST).

INTRODUCTORY REFERENCES.
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theta-functions, notes on the work of Shinichi Mochizuki,” Eur. J. Math., vol. 1, no. 3, pp. 405–440, 2015,
MR3401899.

[Hos19] Y. Hoshi, “On the examination and further development of inter-universal Teichmüller theory,” RIMS
Kokyuroku Bessatsu, vol. B76, pp. 79–183, Aug. 2019, In Japanese, Eprint available on-line.

[Alien] S. Mochizuki, “The mathematics of mutually alien copies: From Gaussian integrals to Inter-universal
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[Yam17] G. Yamashita, “A proof of abc conjecture after Mochizuki,” p. 294, Aug. 2017, v6, Eprint available on-line.
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Topic 1 - Diophantine Geometry: Heights, abc and Vojta Conjectures

The goal of this section is to translate Masser-Oesterlé’s abc conjecture over N⩾0 to Mochizuki’s Vojta
Generalized conjecture in terms of Faltings’ height over the moduli spaces of elliptic curves ℳ1,1.
We first relate abc to 2 arithmetic results in terms of Diophantine approximation (Roth’s Theorem)
and reduction of elliptic curves (Szpiro Conjecture) in Talk 1.1, then recall how to obtain further
connection to algebraic geometry via Vojta Conjecture in terms of bounding heights at points of curves
over number fields [Voj98] in Talk 1.2. We conclude in Talk 1.3 with Mochizuki’s approach in terms of
Faltings’ invariance of heights under isogenies [GenEll], which motivates two key points of IUT: (1)
the construction of a global multiplicative subspace of torsion points of elliptic curve (GMSCG), and
(2) the decoupling of the ⊞/⊠-monoid structures of ring structures to obtain a global Frobenius-type
morphism – see also Talk 2.1.

※ We refer to [BG06] for elementary definitions of Diophantine Geometry in relation with abc (height, Belyi,
etc.) and to [Fes15] §1.2 for an overview. See also [Sil94] Chap. V for Tate’s theory of 𝑞-curves over 𝑝-adic
fields.

TALK 1.1 - ABC & SZPIRO CONJECTURES, ROTH’S THEOREM AND BELYI. An elementary geometriza-
tion of abc (strong form) is already related to two results of arithmetic-geometry of two distinct types:
(1) Roth’s Theorem over Q which is an approximation result of algebraic numbers à la Liouville-
Thue [BG06] Th. 6.2.3, and (2) the generalized Szpiro conjecture on reduction of elliptic curve ibid.
Conj. 12.5.11.

Let us recall the abc (strong form), see ibid. Conj. 12.2.2.

Abc Conjecture (Strg.) For every 𝜀 > 0, there exists 𝐶𝜀 such that any coprime triplet
(𝑎, 𝑏, 𝑐) ∈ N>0 with 𝑎 + 𝑏 = 𝑐 satisfies:

𝑐 ⩽ 𝐶𝜀 rad(𝑎𝑏𝑐)1+𝜀.

We refer to ibid. Chap. 12.2 for further details and examples (computations, Fermat curves, etc.)

§Abc-Roth: Diophantine Approximation. It results from a very educative application of Belyi’s
Lemma – the factorization of a curves morphism by a {0, 1,∞}-ramified cover of P1

𝐾 , see ibid. Lem. 12.2.7
– that the strong abc conjecture implies Roth’s Theorem, see ibid Th. 12.2.9.

Roth Theorem. Let 𝛼 ∈ Q be an algebraic
number. For 𝜅 > 2, there are only finitely
many 𝛽 ∈ Q such that:

⋃︀𝛽 − 𝛼⋃︀∞ ⩽ 1⇑𝐻(𝛽)𝜅

where 𝐻(𝛽) = 𝑒ℎ(𝛽) is the absolute expo-
nential height, and ⋃︀ − ⋃︀∞ denotes the usual
Archimedean absolute value in R.

Szpiro Conjecture (Gen.) Let 𝐸 be an
elliptic curve over Q.
Then for 𝜀 > 0:

max(⋃︀Δ⋃︀, ⋃︀𝑐4⋃︀3) ≪𝜀 cond(𝐸)6+𝜀

where 𝑐4 is taken in the minimal Weierstrass
equation of 𝐸 over Z, and Δ denote its global
minimal discriminant.

§Abc-Szpiro: Reduction for Elliptic Curves. Put roughly, the conductor Cond(𝐸) is an ideal
that encodes the (good/multiplicative/additive) reduction property of 𝐸⇑𝐾 at various p ∈ Spm𝒪𝐾

– see ibid. §12.5.5 - §12.5.9 for definitions, examples, and references. Some direct estimates via the
use of Frey curves (Ex. 12.5.10) establish the equivalence between abc (strong form) and the Szpiro
conjectures, see ibib. Th. 12.2.12.

※ In his full form Belyi’s Theorem is a fundamental result of arithmetic-geometry, see ibid. Chap. 12.3 and
also Talk 3.3.
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TALK 1.2 - ABC & VOJTA CONJECTURES: HEIGHTS AND RAMIFICATION. Vojta Conjecture in its
“generalized” form [Voj98] introduces further elements of arithmetic-geometry in terms of divisors,
curves, and number fields. The Diophantine ingredient is here given by Weil’s notion of height, see
[BG06] §2.4. As a result, one obtains a first connection with abc and the coarse moduli scheme 𝑀1,1 of
one-pointed elliptic curves endowed with 𝐷 = (︀0⌋︀ + (︀1⌋︀ + (︀∞⌋︀.
The Vojta conjecture with ramification for curves – see ibid. Conj 14.4.13 & 14.4.10 – is the equivalent
form of abc (Strg.) in its number field version as formulated in Conj. 14.4.12.

Vojta Conjecture (Curve NF.) For all curves 𝐶 over any number field 𝐾, considering
𝑆 ⩽ 𝑀𝐾 a finite set of places on 𝐾, 𝐷 a reduced effective divisor and 𝐻 a ample line bundle
on 𝐶, let 𝜀 > 0, then

𝑚𝑆,𝐷(𝑃 ) + ℎ𝐾𝐶
(𝑃 ) ⩽ 𝑑(𝑃 ) + 𝜀ℎ𝐻(𝑃 ) +𝑂(︀𝐾(𝑃 )∶𝐾⌋︀(1)

holds for every 𝑃 ∈ 𝐶 ∖ 𝑠𝑢𝑝𝑝(𝐷).
Here, 𝑚𝑆,𝐷 denotes the proximity function of local heights with respect to 𝐷 and 𝑆 of §14.3.1, and ℎ●
denotes the height function with respect to a line bundle.
The Vojta Conjecture for curves over number fields with ramification is proven to be equivalent to the
strong abc-conjecture – see ibid. Th. 14.4.16.
※ A general Vojta for 𝑋 a general irreducible smooth projective variety can be found in Conj. 14.3.2 that indeed
holds for a linear situation in 𝑋 = P𝑛

𝐾 – see Th. 14.3.4. In the context of algebraic approximation, this idea
of ramified covers also leads to a Roth’s Theorem, Th. 14.2.6, which is proven to be strictly equivalent to the
original one – see Prop. 14.2.7.

TALK 1.3 - FROM VOJTA TO MOCHIZUKI: MODULI SPACES OF ELLIPTIC CURVES. The final step
toward the arithmetic-geometrization of abc with respect to the moduli space of elliptic curves 𝑀1,1 is
given by Mochizuki in [GenEll] with the following formulation:

Vojta Conjecture (Gen.) Let 𝐶 be a smooth proper geom. connected curve over 𝐾 number
field and 𝐷 a reduced effective divisor such that 𝐶∖𝐷 is hyperbolic. Then ∀𝑛 ∈ N⩾0, ∀𝜀 > 0, ∃𝑐
constant such that:

ht𝜔𝐶(𝐷)(𝑥) ⩽ 𝑐 + (1 + 𝜀)(log − diff𝐶(𝑥) + log − cond𝐷(𝑥))

for all 𝑥 ∈ (𝐶 ∖𝐷)(𝐾 ′) with 𝐾 ′ any number fields (︀𝐾 ′ ∶ 𝐾⌋︀ ⩽ 𝑛.
which is proven to reduce to the case (𝐶 = P1, 𝐷 = (︀0⌋︀+(︀1⌋︀+(︀∞⌋︀, 𝐾 = Q) – aka the coarse moduli scheme
𝑀1,1, see ibid. Th. 2.1. Here 𝜔𝐶 denotes the canonical sheaf on 𝐶, log − diff𝐶(𝑥) the log-difference
attached to the minimal field of definition of 𝑥 ∈ 𝐶(𝐾̄), and log − cond𝐷(𝑥) the log-conductor similarly
attached to 𝐷 – see [GenEll] Def. 1.5
※ This new formulation can be seen as the abutment of the Belyi techniques of the Diophatine approximations
and of the elliptic reduction constraints of the Szpiro conjecture.

§Faltings: Towards Anabelian Geometry. The consideration of Falting’s height htFalt(−) – defined
on anabelian variety with respect to metrized line bundles – provide a height theory that is invariant
under isogeny (or finite étale morphism) and defined in terms of differential forms – see [Del84] and
[GenEll] below 3.1. This can be seen as a final step towards the étale and 𝑝-adic techniques of anabelian
geometry – see Topic 3.
On the other hand, recall that an arithmetic divisor 𝐷 first defines an arithmetic line bundle ℒ =
𝒪𝐸(𝐷), then a height function htℒ(●) = 𝑑𝑒𝑔𝑎𝑟(ℒ̄⋃︀●) over 𝐸(Q̄) via the arithmetic degree – see [GenEll]
§1. For 𝐸⇑Spec𝒪𝐹 , or Spec𝒪𝐹 → ℳ1,1, this height is then equal to Faltings’ up to a constant:
ht∞(𝐸) ≈ 6htFalt(𝐸) with respect to 𝐷 = (︀∞⌋︀ ∈ 𝑀1,1 – ibid. Prop. 3.4.
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§A Global Multiplicative Subspace. Assume furthermore the existence of a global multiplicative
subspace of 𝐸𝐾 – i.e. a one-dimensional 𝐻 ⩽ 𝐸𝐾(︀ℓ⌋︀ which at 𝑣 ∈ V(𝐾) where 𝐸 has potentially
multiplicative reduction coincides with 𝜇ℓ ⩽ 𝐸𝑣(︀ℓ⌋︀ – recall that via the Tate curve one recovers
𝐸𝑣 ≃ G𝑚⇑𝑞Z𝑣 . Forming the isogenous curve 𝐸𝐻 = 𝐸𝑣⇑𝐻 gives the diagram in Fig. 2 (LHS), which by
Faltings’ height invariance by isogeny and their log-definition, provides a Vojta-like bound of the height
inequality as in Fig. 2 (RHS) – see [GenEll] Lem. 3.5 and [Alien] §2.3.

Fig. 2. Bounding heights Vojta-like for elliptic curves with GMSCG.

G𝑚 G𝑚

𝐸𝑣 ≃ G𝑚⇑𝑞Z𝑣 G𝑚⇑𝑞ℓZ
𝑣 ≃ 𝐸𝐻

(−)ℓ

⇑𝐻

⇒ ℓ.htFalt(𝐸) ≈ htFalt(𝐸𝐻) ≲Falt htFalt(𝐸) + log(ℓ)

§Two steps towards IUT Geometry. As presented in [GenEll] – then formally established by
[IUTChIV] Cor. 2.2 – the existence of such a global multiplicative Fℓ-subspace 𝐻 < 𝐸𝐾(︀ℓ⌋︀ with a
canonical generator modulo {±1} (GMSCG), provides a favourable context for establishing the Vojta
Conjecture (Gen.)

Moreover, since the Frobenius-like (−)ℓ is obviously not a ring homomorphism – (𝑎 + 𝑏)ℓ ≠ 𝑎ℓ + 𝑏ℓ –
the definition of a “global” Frobenius-like morphism will require to uncouple the ⊠ and ⊞-monoid
structures – see Talk 2.1 §The Log-theta-lattice of Hodge theaters – which will be done using anabelian
techniques – see for example Fig. 10-11 in Talk 2.2.

At a categorical level, both the anabelian techniques and the solution to (GMSCG) require the
construction of a new apparatus of Frobenioid and Θ±ellNF-Hodge Theaters whose role is, for various
Spec 𝐾 →ℳ1,1, to host the local-global and arithmetic-geometric symmetries or arithmetic line bundles
at various places of 𝐾 and in an algorithmic way – see Topic 2 and ※ in Topic 3.

※ Recall that an elliptic curve is entirely determined by the evaluation of Weierstrass’ 𝜗-function on its torsions
points – see [Mum83] Chap. I, a result which, on contrary to Riemann’s function, does extends to 𝑝-adic fields.
In the categorical constructions of IUT, elliptic curves and their arithmetic appear via their Tate 𝑞-parameters
and some 𝑝-adic Θ-functions – see Tab. 3 and Talk 2.2.
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Topic 2 - Inter-Universal Teichmüller Geometry

The goal of this section is to develop the definitions and key properties of the IUT geometry relatively
to the stack of elliptic curves. We first motivate in Talk 2.1 the categorical structures hosting the
adhoc arithmetic and geometric symmetries of the context:

(i) ℱ●-prime strips F● are collections of Frobenioids that mimic classes of arithmetic line bundles at
various places V(𝐾) of various elliptic curve Spec 𝐾 →ℳ1,1. Their construction is global-local
and with respect to the ℓ-torsion points 𝐸𝐾(︀ℓ⌋︀ of 𝐸. They can be seen as a “Galois-monoid
analog of adèles and idèles”;

(ii) Θ±ellNF-Hodge theater ℋ𝒯 Θ±ellNF allow the synchronization of the arithmetic and geometric
symmetries of the prime strips – i.e. with respect to Gal(𝐾⇑𝐹mod) for 𝐹mod field of moduli of 𝐸𝐾 ,
and Aut(𝑋𝐾) of cusps of hyperbolic curve of genus 1. They provide an answer to the (GMSCG)
problem – see [IUTChI] Th. A (i) – and can be seen as some “miniature models of the geometry
of the Galois monoids surrounding various arithmetic line bundles”.

Hodge theaters come with Frobenius-like and étale-like layers, the latter being the anabelian context
whose isomorphism classes allow the deformation of the ⊞/⊠-structures of the ring-scheme ones.
Talk 2.2 presents what is the core of the IUT geometry: how the properties of the Hodge theaters
of Talk 2.1 and the anabelian results of Topic 3 provide an indeterminacy-compatible embedding of
Frobenius-like objects into étale-like ones (aka the multiradiality or cyclotomic rigidity by Kummer
theory, see [EtTh]). It comes in 3 flavors: for number and function fields, and for Θ-functions over
nonarchimedean fields – aka the mono-theta environment of [IUTChII] §1. The former is a refined
Local Class Field Theory, the latter is related to Mumford’s construction of singular abelian varieties
[Mum72].
Finally, Talk 2.3 shows how the previous constructions and the nonarchimedean logarithm, by allowing
the global decoupling of the ⊞/⊠-monoids structures of the various 𝒪𝐹𝑣 s – 𝑣 ∈ V(𝐹mod), provide (1)
the existence of a certain log-shell region within a log-theta-lattice of Hodge theaters [IUTChIII] Th. A,
that gives (2) a meaningful estimate of the height on Frobenius-like objects [IUTChIII] Th. B.
※ The meaningfulness of the height estimate follows the existence of indeterminacies (Ind1), (Ind2), and (Ind3)
in IUT Geometry: (Ind1) and (Ind2) come from the mono-anabelian transport 𝐹𝑟𝑜𝑏→ 𝐸𝑡𝑎𝑙𝑒 ≃ 𝐸𝑡𝑎𝑙𝑒→ 𝐹𝑟𝑜𝑏 of
Talk 2.2 and corresponds to some 𝐴𝑢𝑡(𝐺𝑘) and 𝒪𝑘-symmetries of the prime strips; (Ind3) comes from the global
symmetry of the log-shell region. The final abc-inequality à la [GenEll]-Talk 1.3 is indeed [IUTChIV] Th. A.
※ Notations. For 𝑣 ∈ V𝑛𝑜𝑛, 𝑘 = 𝐹𝑣: 𝒪𝑘̄ ring of integers, 𝒪▷

𝑘̄
the ⊠-monoid of non-zero integers, 𝒪×𝜇

𝑘̄
= 𝒪×̄

𝑘
⇑𝒪𝜇

𝑘̄

the ⊠-monoid of units (mod roots of unity), and 𝑞
𝑣
∈ 𝒪𝑘̄ (resp. 𝑞

𝑣
∈ 𝒪𝑘̄ ) the 𝑞-parameter (resp. a 2ℓ-th root of)

of 𝐸𝐹 at 𝑣 – see also Tab. 3 for a global IUT overview.

TALK 2.1 - Θ±𝑒𝑙𝑙NF-HODGE THEATERS: AN APPARATUS FOR GLOBAL MULTIPLICATIVE SUBSPACES.
We present the multiple structures in which evolves the IUT geometry, give some explicit examples
of objects – see Tab. 1 and illustrate the main arithmetic-geometric synchronisation property of the
Θ±ellNF-Hodge theaters.
§Prime Strips. An initial Θ-data is a 7-tuple:

(𝐹 ⇑𝐹, 𝑋𝐹 , ℓ, 𝐶𝐾 ,V ≃ Vmod,V𝑏𝑎𝑑
mod, 𝜀)

with 𝐹 number field, 𝑋𝐹 hyperbolic curve of type (1, 1), ℓ ⩾ 5 prime, 𝐶𝐾 hyperbolic orbicurve, 𝜀 a
cusp of 𝐶𝐾 , that satisfies some technical properties – see [IUTChI] Def. 3.1 or [Alien] §3.3 (i) – the
most important ones being:

(i) V𝑏𝑎𝑑
mod is a set of nonarchimedean places of the field of moduli 𝐹𝑚𝑜𝑑 of the elliptic curve 𝐸𝐹

associated to 𝑋𝐹 giving bad multiplicative reduction;
(ii) ℓ has ℓ-adic Galois representation 𝐺𝐹 → Out(𝐸(︀ℓ⌋︀𝐹 ) that contains SL2(Fℓ);
(iii) 𝑋𝐹 is not of Shimura type.
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Fig. 3. Cusps & Can. Generators

𝑋𝐾 𝑋𝐾

𝐶𝐾 𝐶𝐾

⇑⇑±1

𝑓𝑖𝑛.𝑒𝑡.

𝑖𝑠𝑜𝑔.𝑑𝑒𝑔.ℓ

⇑⇑±1

𝑓𝑖𝑛.𝑒𝑡.

All together these assumptions implies that the top arrow of Fig. 3
arises from a rank one quotient 𝐻 < 𝐸𝐾(︀ℓ⌋︀ → 𝑄 ≃ Z⇑ℓZ such that:

(i) 𝐻 coincides with the canonical subspace at 𝑣 ∈ V ≃ V𝑚𝑜𝑑;
(ii) the cusp 𝜀 of 𝐶𝐾 coincides with the canonical generator at 𝑣 ∈ V.

In this sense (𝐶𝐾 , 𝜀) simulate the global multiplicative subspace and
a canonical generator modulo {±1} – see motivation (GMSCG) of
Talk 1.3. Note also that (iii) implies that the orbicurve 𝐶𝐹 = 𝑋𝐹 ⇑⇑{±1} is a final object in the category
of local étale systems Loc𝐹 (𝐶) (i.e. 𝐶𝐹 is 𝐹 -coric) – see Talk 3.3.

The notion of line bundles (or monoid or divisor) on hyperbolic curves in relation with the Θ-functions
of Talk 1.3 is abstractly encoded in the categorical notion of Frobenioid (∼ 2005.) – we refer to [IUTChI]
Ex. 3.2 and to Talk 2.2 §Theta-function as Symmetric Line Bundle for an illustration of this fact. In
the case of IUT, one can indeed restrict to Frobenioids of nonarchimedean type (i.e. 𝑣 ∈ V𝑛𝑜𝑛) and their
global realified versions as given in Tab. 1 – where Π(temp)

𝑋 acts as an abstract topological group via
Π𝑋 → 𝐺𝑣, see also [Alien] §3.5.

Tab. 1. Types of ℱ◻-prime strips
and local data at 𝑣 ∈ V𝑏𝑎𝑑.

ℱ⊢ 𝐺𝑣 ↷ 𝒪𝐹×
𝑣
× 𝑞N

𝑣

ℱ⊢× 𝐺𝑣 ↷ 𝒪𝐹×
𝑣

ℱ⊢▶×𝜇 𝐺𝑣 ↷ 𝒪×𝜇

𝐹𝑣
× 𝑞N

𝑣

ℱ 𝐺𝑣 ↷ Πtemp
𝑣

𝒟⊢ 𝐺𝑣

𝒟 Πtemp
𝑣

Notations: 𝐺𝑣 = Gal(𝑘⇑𝑘), 𝑘 = 𝐾𝑣,
ℱ
⊩◻ realified version of ℱ⊢◻.

A ℱ●-prime strip is then a collection of data-Frobenioids and isomor-
phims indexed by V that are equivalent to certain models allowing to
recover the given initial Θ-data. For example and more formally

F⊢× = {ℱ×𝑣 }𝑣∈V and ℱ⊩▶×𝜇 = {𝒞⊩, Prime(𝒞⊩) ≃ V,F,{𝜌𝑣}𝑣∈V}

where ℱ⊩▶×𝜇 is a global realified version of ℱ⊢▶×𝜇 with 𝒞⊩ encoding
some “arithmetic divisors” Φ of 𝐹𝑚𝑜𝑑 of the form

Φ = ⊕
𝑣∈V𝑛𝑜𝑛

ord(𝒪▷𝑣 ) ⊗R⩾0 ⊕
𝑣∈V𝑎𝑟𝑐

ord(𝒪▷𝑣 )

and the {𝜌𝑣}𝑣∈V are “global-to-local” isomorphisms 𝜌𝑣 ∶Φ𝑣
∼Ð→ R≧0 – see [IUTChI] Ex. 3.8.

In order to minimize the weight of this formalism, one can think of a prime strip as a collection of 𝐺𝑣-
and Π𝑣-topological monoids 𝒪●𝑣 attached to the initial Θ-data at 𝑣 ∈ V𝑏𝑎𝑑 – see Tab. 1 for bad places
and Tab. 2 for others, also [IUTChI] Fig. I1.2 for a list of F◻-prime strips with references.
Note that, similarly to divisors, ℱ●-prime strip are defined relatively to some base category 𝒟 = {Π𝑣}𝑣∈V
or 𝒟⊢ = {𝐺𝑣}𝑣∈V or D- and D⊢-prime strips.

※ The key data in the Θ-data definition is indeed the cusp 𝜀; its existence here follows from the SL2(Fℓ) property
(ii) – see [IUTChIV] p. 46.

§The Θ±ellNF-Hodge Theaters and Symmetries. A Θ±ellNF-Hodge Theater ℋ𝒯 Θ±ellNF is essen-
tially a system of Frobenioids obtained by gluing a Θ±ell-Hodge Theater ℋ𝒯 Θ±ell and a ΘNF-Hodge
Theater ℋ𝒯 ΘNF together

ℋ𝒯 Θ±ellNF = {ℋ𝒯 Θ±ell
,ℋ𝒯 NF, glue isom.}

– see [IUTChI] Def. 6.13 (i). Roughly and formally, that is:

ℋ𝒯 ΘNF =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

●A Θ-Hodge theater ℋ𝒯 Θ = ({ℱ𝑣}V,F⊩mod)
●A ℱ-prime stripe F> = {ℱ>.𝑣}V
●A capsule F𝐽 = {F𝑗}𝐽 of ℱ -prime strips
indexed by 𝐽 ≃ F÷×ℓ

; ℋ𝒯 Θ±ell =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

●A ℱ − prime stripe F≻ = {ℱ≻.𝑣}V
●A capsule F𝑇 = {F𝑖}𝑇 of ℱ-
prime strips indexed by 𝑇 ≃ Fℓ

The ℋ𝒯 ΘNF is of arithmetic nature and related to number field, while ℋ𝒯 Θ±ell is of geometric nature
and related to elliptic curves. The former includes two global portions, a realified one and a container
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for the cups of 𝑋𝐾 ; the global portion of the latter is a container for the places of 𝐾⇑𝐹mod – see Fig. 4.
Both are indeed based on some Hodge theater versions of respectively the D and D⊢-prime strips – see
also [IUTChI] Fig. 6.6 for a list of Frobenioids.

In terms of GMSCG, the key property of ℋ𝒯 Θ±ellNF is to host the multiple avatars of the global
multiplicative subspace 𝐻 ≃ Fℓ modulo {±1} by allowing the global synchronization of two kinds of
symmetries and of the local {±1}-indeterminacies of the primes stripes:

(i) Geometric symmetries: the set of cusps of 𝑋𝐾 identified to 𝑄 ≃ Fℓ carries some Aut(𝑋𝐾) ≈ F⋊±ℓ -
symmetries;

(ii) Arithmetic symmetries: the orbicurve 𝐶𝐾 carries the symmetries of the Galois group F÷×ℓ ≈
Gal(𝐾⇑𝐹mod) ↩ Aut(𝐶𝐾);

(iii) Global symmetries: In terms of the Galois representation of the ℓ-torsion points, F÷×ℓ ≃ ( ∗ ∗
0 ∗ )⇑( ∗ ∗

0 ±1 ).

Here one denotes F⋊ℓ = Fℓ ⋊ {±1} and F÷×ℓ = F×ℓ ⇑{±1}, with the actions F⋊ℓ ↷ Fℓ and F÷×ℓ ↷ F÷×ℓ , and
ℓ÷× = (𝑙 − 1)⇑2.

We refer to Fig. 4 for the gluing of the ℋ𝒯 Θ±ell and ℋ𝒯 NF theaters into a ℋ𝒯 Θ±ellNF, see also the
discussion in [Alien] §3.3 (iv) and (v), to Fig. 5 in terms of labels F×ℓ and F÷×ℓ , and to Fig. 6 in terms of
𝒟-base of Hodge Theaters, and also [IUTChI] Th. A (i).

Fig. 4. Geometric and Arithmetic Symmetries of a theatre ℋ𝒯 Θ±ell
: Global synchronization of the {±1}-indeterminacies

of a ℱ-prime strip via the labels – many flavours. Notations: ≻ and > denote different classes of D-strips.

Frobenioids labels ≻∶= (︀−𝑙÷× < ⋅ ⋅ ⋅ < −1 < 0 < 1 < ⋅ ⋅ ⋅ < 𝑙÷×⌋︀ (︀1 < 2 < ⋅ ⋅ ⋅ < 𝑙÷× − 1 < 𝑙÷×⌋︀ ∶=>

Local: 𝑆𝐿2(Fℓ) (∗ ∗
0 ±1)V (∗ ∗

0 ∗)V

Global: F⋊±ℓ ≈ Aut𝐾(𝑋𝐾) ↪ Π𝑋𝐾
↷ {Cusps of 𝑋𝐾} 𝐴𝑢𝑡(𝐶𝐾) ↪ Gal(𝐾⇑𝐹mod) ≈ F÷×ℓ

Symmetries Geometric & Additive Arithmetic & Multiplicative

𝐺𝑙𝑢𝑒

F×ℓ→F÷×ℓ
±𝑡↦⋃︀𝑡⋃︀

– see also Fig. 5 and Fig. 6 for definitions in terms of labels or of Θ±ellNF-Hodge theaters.

In conclusion, and with the words of [Alien] §3.3 (iv), a Θ±ellNF-Hodge Theater can be thought as a
system of Frobenoids-data – such as (i) topological groups 𝜋

(temp)
1 (𝑋𝐹 ), (ii) rational function monoids

𝒪𝐾∗

(𝑣)
for 𝐾 extension of 𝐹mod (completed at 𝑣 ∈ V), and (iii) monoids of effective arithmetic divisors

as in Talk 1.3. – whose structures allows the global synchronization of local symmetries.

※ Two anabelian remarks – see Talk 3.2: (1) Via the identification of
the prime arithmetic ramification to the divisorial geometric one, anabelian
reconstructions theorems provides the reconstruction of prime-valuation prop-
erties; (2) Via Πtemp

𝑋𝑣
→ 𝐺𝑣, the geometric F⋊±ℓ -symmetries on the labelled

{𝐺𝑣}𝑡∈Fℓ
s correspond to the Πtemp

𝑋𝑣
-conjugacy of cuspidal inertia groups. The

Tab. 2. Typical Frob. data of a
Θ±ell𝑁𝐹 -Hodge Theater.

V𝑏𝑎𝑑,𝑛𝑜𝑛 Π𝑋 ↷ 𝒪▷𝑘
V𝑏𝑎𝑑 Πtemp

𝑋 ↷ 𝒪▷𝑘
V𝑎𝑟𝑐 Aut-holom.

construction above thus induces an automatic “conjugate synchronization” of the label with respect to the places –
see [Alien] §3.6 (ii), and later Talk 2.3.
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Fig. 5. Combinatorial gluing of Θ±ellNF-
Hodge theaters along labels – [Alien] Fig. 3.8.

Fig. 6. Gluing of the 𝒟-bases of Θ±ellNF-Hodge Theaters; ⇑◻𝑖 denotes the
prime stripe of label 𝑖 ∈ 𝑇 of additive or multiplicative type for ◻ = ± or
◻ = ÷× – [Yam17] p. 143.

§The Log-theta-lattice of Hodge Theaters. The Θ-link is a morphism à la Frobenius – i.e. that
mimics the (−)ℓ-morphism of Talk 1.3 – at the level of Θ±ellNF-Hodge theaters, while log-links “juggle”
the multiplicative and additive structures. By allowing some mild indeterminacies, they all together
allow the decoupling of the ⊞⇑⊠-monoids structures. We present the essential construction and properties
of log-theta-lattice of Hodge theaters that relies on the Θ-constructions of Talk 2.2 and brings the
required indeterminacies for an abc-estimate in Talk 2.3.

The Θ-link. In its most elementary form, the Θ-link is an application between two isomorphic versions
†(−) and ‡(−) of a same Θ-Hodge theater

†ℋ𝒯 Θ = ({†ℱ𝑣}V, †F⊩mod)
ΘÐ→ ‡ℋ𝒯 Θ = ({‡ℱ𝑣}V, ‡F⊩mod)

defined via ℱ⊩-prime strips †F⊩tht
∼Ð→𝑝𝑜𝑙𝑦 ‡F⊩mod

; with 𝑣 ∈ V𝑏𝑎𝑑 in:
◻F⊩mod ∶ 2ℓth-root of 𝑞𝑣 ∈ 𝒪▷𝑣
†F⊩tht ∶ ℓth-root of Θ̈𝑣 ∈ 𝒪▷𝑣

where Θ𝑣 is the nonarchimedean Θ-function of Talk 2.2 (in its Frobenioid version). The Θ-link can
thus be seen as {ΘN

𝑣 ↦ 𝑞N𝑣 }V𝑏𝑎𝑑 and as (i) dilating the value groups 𝒪▷𝑣 , 𝑣 ∈ V𝑏𝑎𝑑, while (ii) preserving
the unit group 𝒪×†𝐶𝑣

≃ 𝒪×‡𝐶𝑣
, 𝑣 ∈ V𝑔𝑜𝑜𝑑, 𝑏𝑎𝑑 – see [IUTChI] Th. A (ii) or ibid. Cor. 3.7 (i) and (iii).

An iteration of the Θ-link between Hodge theaters then provides the following Frobenius picture of
Hodge theaters – see ibid. Cor. 3.7 (ii) and 3.8:

. . .
𝑛−1ℋ𝒯 Θ 𝑛ℋ𝒯 Θ 𝑛+1ℋ𝒯 Θ . . .Θ Θ Θ Θ

Considering the 𝒟-bases 𝒟-Θ-Hodge theaters, the unique isomorphic class ●𝒟⊢ = 𝑛𝒟⊢ ≃ 𝑛+1𝒟⊢ provides
a similar 2-dimensional étale picture between 𝑛𝒟𝑣s and ●𝒟⊢𝑣 s, see Cor. 3.9.

The log-link. In another direction, the 𝑝-adic log∶𝒪×𝑣 → 𝑘𝑣 defines a Π𝑣-equivariant isomorphism of
Ind-topological module 𝒪×𝜇

𝑘
⊗Q ≃ 𝑘𝑣 – i.e. a topological compatibility, see Talk 2.2 – that first passes

to the ℱ-prime strips log∶ †F→ ‡F then to the Θ±ellNF-Hodge theaters log∶
†
ℋ𝒯 Θ±ell𝑁𝐹 →

‡
ℋ𝒯 Θ±ell𝑁𝐹

with isomorphisms between 𝒟-prime strips, see [IUTChIII] Prop. 1.2 (i), and Prop. 1.3 (i)-(ii) coricity.
One obtains a non-commutative vertical Frobenius picture – see ibid. (iv):

Fig. 7. Non-commutative Frobenius-étale pictures of Θ±ellNF-Hodge theaters.

. . .
𝑚−1
ℋ𝒯 Θ±ell𝑁𝐹

𝑚
ℋ𝒯 Θ±ell𝑁𝐹

𝑚+1
ℋ𝒯 Θ±ell𝑁𝐹 . . . Frobenius-like

●

ℋ𝒯 𝒟−Θ±ell𝑁𝐹 Étale-like

log

. . .

log

𝜅

log

𝜅

log

𝜅 . . .

where the 𝜅s are induced by the Kummer embeddings of Talks 2.2 and 3.3.
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This definition of the Θ-link first extends in a Θ×𝜇
𝐺𝑎𝑢-link with respect to Θ±ellNF-Hodge Theaters and

ℱ⊩▶×𝜇-prime strips [IUTChII] Cor. 4.10 (iii), then in a Θ×𝜇
𝐿𝐺𝑃 -link [IUTChIII] Def. 3.8 (ii) that is

relative to the log-link above – see ibid. (iii). The Frobenius-Étale picture above then takes place
vertically in a 2-dimensional lattice, where (1) each column stands on top of a common étale container
●

ℋ𝒯 𝒟−Θ±ell𝑁𝐹 that (2) is not shared via the Θ-links – see Fig. 8 below. The
●

ℋ𝒯 𝒟−Θ±ell𝑁𝐹 is said to
be 𝒟-holomorphic in reference to (1), and will later be transformed in a 𝒟⊢-mono-analytic objects –
see Tab. 14 – as consequences of the mono-anabelian constructions of Talk 3.3.

Fig. 8. The LGP-Gaussian log-theta lattice as in [IUTChIII] Def. 1.4

In this picture, the étale-like
●

ℋ𝒯 𝒟−Θ±ell𝑁𝐹 is said to be vertically coric. The comparison of two sides
of the Θ-link after log-juggling requires some multiradial properties – see Talk 2.2 – as well as the
introduction of mild indeterminacies (Ind1), (Ind2) and (Ind3) for a log-Θ-wandering – see Talk 2.3.

※ In the Frobenius-Étale picture Fig. 7: the first row is Frobenius-like objects – since related to the 𝑞𝑣s, while
the second row is Étale-like ones – since related to anabelian Π𝑣s; Reversing the Kummer arrows provides the
embedding of Galois objects into some global analytic containers, a picture similar to Ihara’s foundation of
Grothendieck-Teichmüller theory. LGP stands for “Log-arithmetic Gaussian Procession” – see Talk 2.3.

TALK 2.2 - CYCLOTOMIC RIGIDITY AND MULTIRADIALITY. The dissociation of ⊠⇑⊞-monoids structures
at the level of Θ±ellNF-Hodge theaters relies at the level of objects on a functorial Kummer embeddings
of rigid Frobenius-like objects into étale-like ones. This embedding is led via a cyclotomic isomorphism
whose rigidity or symmetries determine a certain degree of freedom that allows the compatible
continuous anabelian (re/de)constructions of the étale container. At a categorical level it determines a
uni/multiradiality property of certain radial environments, which joined to a topological compatibility
one allows the “log-theta-wandering” of Talk 2.3.

Fig. 9. Multiradiality - Ex. 1.8 (i) [IUTChII] – †
(−) and

‡
(−) denotes different version of isomorphic groups.

†Π↠ †𝐺
𝑓𝑢𝑙𝑙 𝑝𝑜𝑙𝑦≃ 𝐺𝑘

‡Π↠ ‡𝐺
𝑓𝑢𝑙𝑙 𝑝𝑜𝑙𝑦≃ 𝐺𝑘 ℛ

†𝐺 ≃ 𝐺𝑘 ≃ ‡𝐺 𝒞
Φ

Formally a radial environment {ℛ,𝒞,ℛ Φ→ 𝒞} – com-
posed of a “fine” coric category 𝒞, a radial category
ℛ, and a radial functor Φ – is said to be multiradial
if Φ is full – see [IUTChII] Ex. 1.7-1.8 for examples
and definitions, [Alien] §3.1 for discussion and §3.2.2
§3.2.1, and below for examples. Note that consider-
ing Aut(𝐺)-orbits instead of poly-isomorphisms in ℛ as in Fig. 9 ensures automatically the lifting of
isomorphisms from 𝒞 to ℛ.
Following Grothendieck’s idea of crystals, a multiradial environment can be thought as a “fibration
endowed with a connection whose monodromy allows parallel transport of structures between the
fibers”.
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We present the multiradial and topological compatibility properties for various portions of the ℱ⊩▶×𝜇-
prime strips – see Tab. 3 for a global overview:

(i) For local places in V𝑔𝑜𝑜𝑑,𝑛𝑜𝑛 in terms of the local unit group 𝒪▷𝑘 or its quotient 𝒪×𝜇
𝑘 , via Brauer

group techniques – see Fig. 10 and [IUTChII] §1;
(ii) For the global portion, or 𝐹𝑚𝑜𝑑, via 𝜅-coric functions and anabelian geometry – see Talk 3.3 and

[IUTChI] Ex. 5.1 (v);
(iii) For local places in V𝑏𝑎𝑑 in terms of the local value group generated by {𝑞𝑗2}𝑗 ⩽ 𝒪▷𝑘 , via mono-theta

environments and the theory of nonarchimedean Θ-functions of [EtTh] §1-2.
A construction is said to be topological compatible if it is with respect to the 𝐺𝑘-ind one of the monoids
– e.g. for 𝒪▷

𝑘
with respect to the ind-limit of {𝒪▷

𝑘𝐻 , 𝐻 < 𝐺𝑘 cofinite}.

The case (iii) relies on three rigidity properties of a specifically defined mono-theta environment MΘ

related to nonarchimedean Θ-functions – see [Alien] §3.4 (iii)-(iv) – which for 𝑣 ∈ V𝑛𝑜𝑛, 𝑏𝑎𝑑 are defined
by:

Θ̈𝑣(𝑈̈𝑣) ∶= 𝑞−1⇑8
𝑣 ∑

𝑛∈Z
(−1)𝑛 . 𝑞

1
2 (𝑛+

1
2 )

2

𝑣 . 𝑈̈2𝑛+1
𝑣 with sym.

Θ̈(𝑈̈𝑣) = −Θ̈(𝑈̈−1
𝑣 ); Θ̈(−𝑈̈𝑣) = −Θ̈(𝑈̈𝑣)

Θ̈(𝑞𝑗⇑2𝑈̈) = (−1)𝑗𝑞−𝑗2⇑2𝑈̈−2𝑗 .Θ̈(𝑈̈)
(1)

– see also [EtTh] Prop. 1.4. We review the construction of this framework whose three rigidity properties
lead to the multiradiality and topological compatibility of MΘ.

※ The whole process of cyclotomic rigidity can also be understood in terms of mono-anabelian transport as
illustrated in Fig. 10 and 11: note that the diagrams commute up-to some ⧹︂Z×- and {±1}-indeterminacy. – see
mono-theta environments of Gaussian Monoids in [IUTChIII] §2-§4, and Talk 2.3. Technical note: For (ii) the
Galois evaluation of [Alien] 3.6 recovers the finite extensions of 𝐹𝑚𝑜𝑑.

§Rigidity via Brauer and 𝜅-coric functions. To 𝑀 ↶ 𝐺 a Frobenius-like topological multiplicative
monoid containing some torsion 𝜇(𝑀) < 𝑀 – e.g. 𝒪▷

𝑘
↶ 𝐺𝑘 or 𝐾̄× ↶ 𝐺𝐾 – one attaches functorially a

Kummer morphism:

𝑀
𝜅Ð→𝐻1(𝐺, 𝜇⧹︂Z(𝑀)) where

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝐻1(𝐺, 𝜇⧹︂Z(𝑀)) ∶= limÐ→𝐻1(𝐺, 𝜇Z⇑𝑁Z(𝑀)) is étale-like
𝜇Z⇑𝑁Z(𝑀) = 𝐻𝑜𝑚(Z⇑𝑁Z, 𝑀𝑡𝑜𝑟𝑠) is Frobenius-like.

The 𝜇⧹︂Z(−) ≃ ⧹︂Z(1) are cyclotomes that come with cyclotomic rigidity isomorphism 𝜌∶𝜇⧹︂Z(𝑀) ∼→ 𝜇⧹︂Z(𝐺)
– see Talk 3.3 §Absolute mono-anabelian reconstructions (1) – which are canonically defined up to
Aut(⧹︂Z) ≃ ⧹︂Z×. We discuss, for various radial environments, how symmetries/indeterminacies of the
cyclotomic rigidity isomorphisms in terms of topological compatibility and multiradiality – see discussion
of [Alien] §2.6.1 (i)-(iii).

For case (i), we refer to the functorial construction of [Alien] Ex. 2.12.1-2 in terms of Brauer groups,
which, it is shown, either admits a ⧹︂Z×-symmetry or is topological compatible. The radial environment
is given by (ℛ,𝒞, Φ) with some abstract ℛ = 𝒪▷

𝑘
↶ 𝐺𝑘 , 𝒞 = 𝒪×𝜇

𝑘
↶ 𝐺𝑘, and Φ the quotient 𝒪▷

𝑘
→ 𝒪×𝜇

𝑘

whose potential ⧹︂Z×-symmetries are incompatible with 𝜌 – see [Alien] §3.4 (i). The case (i) is thus
topological compatible but not multiradial.
For case (ii), we refer to the 𝜅-coric rational functions of [Alien] §2.13.1. For 𝐾𝑋 function field of a hyper-
bolic curve 𝑋 over 𝑘 – 𝑘 number or sub-𝑝-adic field, the Kummer morphism 𝐾𝑋 →𝐻1(𝐺𝐾𝑋

, 𝜇(𝐾̄𝑋))
is associated to 𝜌∶𝜇(𝐾̄𝑋)

∼→ 𝜇(𝐺𝐾𝑋
) is a ⧹︂Z×-torsor under the inertia groups 𝐼𝑥 of closed points 𝑥 of

𝑋(𝑘). The radial data are given as in Fig. 9 and the evaluation provides a {±1}-indeterminacy for 𝜌
that is multiradial but not topological compatible – see discussion [Alien] §3.4 (ii), and [IUTChI] Ex. 5.1
(v) for Frobenioids .
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Fig. 10. Cyclotomic rigidity and Mono-anabelian trans.
in V𝑛𝑜𝑛 via Brauer. ∗ = Aut(𝐺𝑘 ↷ 𝒪

×

𝑘̄
), 𝐻̃1

= 𝐼𝑚(︀𝜅⌋︀.

Ét. 𝐻̃1(𝐺𝑘, 𝜇
⧹︂Z
𝑘
(𝐺𝑘)) 𝐻̃1(𝐺𝑘, 𝜇

⧹︂Z
𝑘
(𝐺𝑘))

Frob. 𝒪×𝑘 𝒪×𝑘

∼∗

𝜅−1𝜅 ↻⧹︂Z×

Fig. 11. Cyclotomic rigidity and Mono-anabelian
transport in 𝐹 ×

𝑚𝑜𝑑 via 𝜅-coricity. ∗ = Aut(𝐺𝑘 ↷ 𝐾̄×

𝑋).

𝐾̄×
𝑋(Π𝑋) 𝐾̄×

𝑋(Π𝑋) Ét.

𝐾̄×
𝑋 𝐾̄×

𝑋 Frob.

∼∗

𝜅−1𝜅 ↻{±1}

※ The multiradiality property follows in both cases the possibility of the monoid to be sent in Q≥0∩⧹︂Z× = {1} ⊂ Q⊗⧹︂Z
– e.g. via 𝒪▷

𝑘̄
↠ N ≃ 𝒪▷

𝑘̄
⇑𝒪×̄

𝑘
in case of no topology compatibilty, or 𝐾×

𝑋 ↠ Z via the valuations at closed points
of 𝑋𝑐𝑝.

Case (iii) requires first the construction of some mono-theta environments that we describe below.

Fig. 12. The context of
mono-theta environment

ℒ𝑌

𝒴 𝑙𝑜𝑔 ℒ𝑌 𝑌

𝒴 𝑙𝑜𝑔 𝑌

𝒳 𝑙𝑜𝑔

𝜇2

𝑠Θ

𝑠𝑎𝑙𝑔

Z

§Theta-function as Symmetric Line Bundle. Let 𝐾⇑Q𝑝 be a finite
extension, 𝑋⇑𝐾 a curve of type (1, 1) with multiplicative stable reduction,
and 𝒳 𝑙𝑜𝑔 the corresponding stable log-curve over 𝒪𝐾 (with residue field 𝑘).
Let us consider an (𝜇2,Z)-étale tempered cover 𝒴 𝑙𝑜𝑔 𝜇2Ð→ 𝒴 𝑙𝑜𝑔 ZÐ→ 𝒳 𝑙𝑜𝑔 with
generic fibres denoted 𝑌 (resp. 𝑌 ), and such that ℒ = 𝒪𝒳 induces some line
bundles ℒ𝑌 and ℒ𝑌 by pull-back – see Fig. 12 & Fig. 19.
In terms of G𝑚-torsor and 𝑈̈ -coordinates, the Θ̈-function of Eq. (1) is recov-
ered as quotient of an algebraic section by a theta one – see [Alien] §3.4 (iv)
& (iii), [EtTh] Prop. 1.4, and Fig. 12. More precisely, the values of Θ̈ are re-
covered via certain Kummer cohomology classes eg 𝒪×

𝐾̈
.𝜂Θ ∈ 𝐻1(Πtemp

𝑌
, ΔΘ)

see ibid. Prop. 1.3 & 1.4.

Obstructions to canonicity: (i) the section 𝑠𝑎𝑙𝑔 is defined up-to-a 𝐾×-multiple
(see line bundle), (ii) the choice of base point implies a Z-symmetry (a priori not compatible with the
(𝑠𝑎𝑙𝑔, 𝑠Θ)-construction.)

§The Mono-theta Environment. Applying the tempered fundamental group and taking the 𝑁 -
quotient in the context above provide the geometric model for the definition of a mono-theta environment
MΘ – see [EtTh] Def. 2.13, that is:

(i) A topological group 𝜋temp
ℒ×𝑌

(︀𝑁⌋︀;
(ii) A subgroup of symmetries ∐︀Z, 𝐾×̃︀ ⩽ 𝑂𝑢𝑡(𝜋temp

ℒ×𝑌
(︀𝑁⌋︀);

(iii) A theta-section 𝑠Θ∶𝜋𝑌 → 𝜋temp
ℒ×𝑌

(︀𝑁⌋︀ that is given up-to 𝜇𝑁 -inner isomorphism.
One prove such a triple of data to be (i) 𝐾×-invariant or constant multiplicatively rigid, (ii) compatible
with the Z-symmetries or discrete rigid, and (iii) cyclotomic rigid (see below) – see [EtTh] Cor. 2.19.
Note that Z-symmetry of MΘ corresponds to a multiplication by (−1)𝑗𝑞𝑗2⇑2𝑈̈−2𝑗 on Θ̈.

§Cyclotomic Rigidity and Multiradiality. The tempered fundamental group of G𝑚-torsors pro-
vides an arithmetic-geometric fundamental sequence that is exact in our case of Serre “goodness”
[Moc03b] §4.1, and one can consider the Mumford theta-group 𝜋Θ as in Diag. 2 (LHS) – Note that 𝜋Θ

𝑌

corresponds to the ⧹︂Z(1) ⊕Z→ Z-quotient in 1→ΔΘ ≃ ⧹︂Z(1) → 𝜋Θ
𝑋 → 𝜋𝑎𝑏

𝑋 ≃ ⧹︂Z(1) ⊕Z→ 1.

1 𝜇𝑁 𝜋ℒ×𝑌 (︀𝑁⌋︀ 𝜋𝑌 1

1 𝜇𝑁 𝜋Θ
ℒ×𝑌

(︀𝑁⌋︀ 𝜋Θ
𝑋 1

1 𝜇𝑁 𝜋Θ
ℒ×𝑌

(︀𝑁⌋︀⋃︀ΔΘ ΔΘ 1

𝜇𝑁 ⊕ΔΘ (2)

It follows Diag. 2 (RHS) that one recovers canonically the Frobenius-like and étale-like cyclotomes ΔΘ
and 𝜇𝑁 , as well as the cyclotomic rigidity isomorphism ΔΘ

∼Ð→ 𝜇𝑁 as (1, 1) ∈ 𝜇𝑁 ⊕ΔΘ.
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The coric datas are roughly of the form Π ↷ MΘ ΦÐ→ 𝐺 ↷ 𝒪×𝜇 which one shows are multiradial
[IUTChII] Cor. 1.10 and 1.12 and topological compatible by their very construction. The MΘ-cyclotomic
rigidity isomorphism is also stable under the F⋊±ℓ -symmetry of the Θ±ellNF-Hodge theaters as F⋊±ℓ ≃
Δ𝐶(MΘ)⇑Δ𝑋(MΘ) – where Δ● is the usual kernel of Π●↠ 𝐺𝑘, augmented fundamental group of 𝐶
and 𝑋 attached to MΘ, see [IUTChII] Rem. 1.1.1 (iv)-(v).

※ For the (tempered) Frobenioid version of MΘ, we refer to [IUTChI] Ex. 3.2 that super-seeds the original
[EtTh] §3 - §5. A daring reader will refer to [IUTChIII] Th. 2.2 and Cor. 2.3 for respectively the Frobenioids
and Hodge theaters versions of multiradiality and Kummer compatiblity properties. For further details on the
cohomological construction of the étale theta function and its anabelian properties, see Talk 3.3.

TALK 2.3 - LOG-THETA LATTICE: SYMMETRIES AND INDETERMINACIES. We reach our original goal as
stated in Talk 1.3 which is to obtain a meaningful height-comparison in terms of ⊞/⊠-monoids structures
after (−)ℓ-isogeny, or in IUT semantic, to build a section between some regions of the log-Theta lattice of
Fig. 8 – see “splitting monoids of logarithmic Gaussian procession monoids”, Th. A [IUTChIII]. To this
end, we consider some 𝑞-pilot and Θ-pilot objects – some (globally realified) Frobenoids related to 𝐹𝑚𝑜𝑑

and defined at 𝑣 ∈ V𝑏𝑎𝑑 by the arithmetic line bundle attached respectfully to (𝑞-pilot): the zero locus
of 𝑞

𝑣
in the codomain of the Θ-link; and (Θ-pilot): of the {𝑞𝑗2

𝑣
}𝑗=1,...,ℓ÷× in the domain of the Θ-link,

see [IUTChIII] Def. 3.8. The comparison of their log-volumes with respect to certain log-procession
and log-shell regions provide the estimate.
The creation of the section involves a certain log-theta wandering between Θ±ellNF-Hodge theaters, see
Fig. 15, that rely on additional multiradial and coric properties of the objects, see Talk 2.2 and below.

※ Since within the log-theta lattice the Θ-link depends on the ⊠-monoid structure and is incompatible with
the ⊞-one, we write †(−) and ‡(−) to distinguish different ring-structures induced by the logarithm. Note that
both the existence of the section and the meaningfulness of the log-volume comparison are consequences of the
symmetries that have been preserved in the previous constructions.

§Three Kinds of Indeterminacies on Log-Shells & Multiradiality. The introduction of mild
indeterminacies that reflect the canonical isomorphism classes of objects endows the Θ-link in a global
multiradial process or algorithm – see Fig. 14 – that provides (1) a section on a region of the log-theta
lattice, and (2) a log-volume comparison of the 𝑞- and Θ-objects – see [Alien] §3.7 (i).

Fig. 13. log-link, ⊞/⊠-structures
and étale container.

(𝒪▷†
𝑘
,⊠) (𝒪▷‡

𝑘
,⊞)

𝒪▷
𝑘
(Π)

𝑘(Π)

log

∼Ð→ ∼Ð→

⩽

Log-shells. In the context of the Frobenius-étale picture of Fig. 7, we
introduce the following log shell – see also [Alien] §2.12.3 (iv):

ℐ(Π) = 1
2𝑝 log(𝒪×𝑘(Π)) ⩽ 𝑘(Π)

whose property is to fix the non-commutativity of Fig. 7: it has the
upper-semi-compatibility property which is to contain both 𝒪▷(Π)𝑘

and log(𝒪×𝑘(Π)) – i.e. the images of the Kummer morphisms.
Note that since this log-shell can be reconstruct without the ring
structure, it is said to be mono-analytic.
Log-shells comes indeed in 4 variants – see [Alien] §3.6 (iv) or [IUTChIII] Prop. 1.2 (vi):

(i) Holomorphic Frobenius-like: At fixed position (𝑚, 𝑛) in the log-theta lattice;
(ii) Holomorphic étale-like: Vertical coric (𝑛, ●), related to 𝑘(Π);
(iii) Mono-analytic Frobenius-like: At fixed position (𝑚, 𝑛), related to 𝒪×𝜇

𝑘 ;
(iv) Mono-analytic étale-like: Bicoric (●, ●), related to 𝒪𝑘(𝐺).

Note that all of the variant will be required for the correct estimate.

The multiradial algorithm then goes as in Fig. 14 by producing from non-vertical or non-horizontal
invariants strips some multiradial objects.
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Fig. 14. Multiradial algorithm: Kummer and forget, from ℱ to 𝒟⊢-prime strip.

Arithmetic Holomorphic
Frobenius

ℱ-prime strips

Arithmetic Holomorphic
Étale

𝒟-prime strip

Mono-analytic
Étale

𝒟⊢-prime strips

𝐾𝑢𝑚𝑚𝑒𝑟 𝐹 𝑜𝑟𝑔𝑒𝑡

Indeterminacies. We briefly review the log-shell mild indeterminacies:
(Ind1) At the 𝒟-étale level of Hodge theater, the Θ-link is defined as full polymorphisms †Π ↠

†𝐺
𝑓𝑢𝑙𝑙 𝑝𝑜𝑙𝑦≃ ‡𝐺↞ ‡Π. This indeterminacy arises from the 𝒟⊢-prime strip to synchronize theses

symmetries with the more rigid Frobenius objects that they contains via Kummer;
(Ind2) This indeterminacy arises from the ℱ⊢×𝜇-prime strip and the ⧹︂Z×-indeterminacy acting on 𝒪×𝜇;
(Ind3) This indeterminacy reflects the upper-semi-compatibility of the log-shells.

Note that these indeterminacies are formulated at the level of tensor packets attached to procession S
which achieve multiradiality at the level of labels in F÷×ℓ – see [Alien] §3.6 (v). (Ind1) and (Ind2) comes
from internal symmetries of the Θ±ellNF-Hodge theaters, while (Ind3) is a gobal symmetry on the
vertical strip of the log-theta lattice.

Fig. 15. Log-Theta Wandering: two computations
of 𝑙𝑜𝑔−𝑣𝑜𝑙(𝑞). ≠ column ≠ arithm. hol. container.

● ●

(0,0)
ℋ𝒯 Θ±ell

𝑁𝐹
(1,0)
ℋ𝒯 Θ±ell

𝑁𝐹

●
(1,−1)

ℋ𝒯 Θ±ell
𝑁𝐹

Θ-pilots 𝑞-pilots

Θ

log

§The Main Multiradial Algorithm: Log-theta Wan-
dering. The ⊞/⊠-monoid structures comparison process is
dealt with by considering an initial 𝑞-object in the Θ±ellNF-
Hodge theater

(1,0)
ℋ𝒯 Θ±ell

𝑁𝐹 as in Fig. 15. On the one
hand, the Θ-link being defined with respect to the ⊠-monoid
structure only – as supported by the value group in 𝒪▷,
this requires the consideration of the

log∶
(1,−1)

ℋ𝒯 Θ±ell
𝑁𝐹 →

(1,0)
ℋ𝒯 Θ±ell

𝑁𝐹
which intertwins the ⊞ and ⊠ structures at the level of the
(−)⊩▸ and (−)⊢×𝜇-prime strip of the codomain of Θ.
On the other hand, the Θ-link acts at the level of the ℱ -prime strips as a gluing isomorphism between
the arithmetic holomorphic structures of the two vertical lines. One can thus consider the whole
vertical log-column

(0,●)
ℋ𝒯 Θ±ell

𝑁𝐹 in its 𝒟⊢-mono-analytic étale version for identifying up to the 3
indeterminacies the required volume estimate:

log-vol[Θ-object mod (Ind1), (Ind2) and (Ind3)] ⩾ log-vol[𝑞-pilot object]

– see [Alien] §3.7 (ii) for a detailed description of the 12-steps estimate process.
※ The final step for the abc-estimate as in [GenEll] of Talk 1.3 relies on the construction of suitable initial
Θ-data as in [IUTChIV] Cor. 2.2, that once the Log-volumes estimates of Θ-pilot objects obtained as in ibid.
Th. 1.10, provide as application of IUT the searched Diophantine inequalities of [EtTh] Lem. 3.5 – see [IUTChIV]
Cor. 2.3.
Tab. 3. Frobenoids components of a theater ℋ𝒯 Θ±ell𝑁𝐹 : Θ-link properties and cyclotomic rigidity origin; Definition of
𝑞-pilot and Θ-pilot objects.

Places Definition {𝑞, Θ}-data Θ-link Cyclotomic Rigidity

Local unit group V𝑛𝑜𝑛 𝐺𝑘 ↷ 𝒪
×𝜇

𝑘̄
and {𝒪

×𝜇

𝑘̄𝐻 ⩽ (𝒪
×𝜇

𝑘̄
)

𝐻
}𝐻⩽𝑜𝑝𝐺𝑘

With 𝑘 = 𝐾𝑣
𝑎◻ iso Brauer group

Local value group V𝑏𝑎𝑑
∐︀𝑞𝑗2

𝑣
, 𝑗 = 1, . . . , 𝑙÷×̃︀

𝑀𝑜𝑛.
≃ N ⩽ 𝒪

▷

𝐾𝑣

With 𝑞
𝑣
∈ 𝒪

▷

𝐾𝑣
a 2ℓth root of 𝑞

𝑣
, Tate param. of 𝐸𝐾

𝑏◻ dilate Mono-theta env.

Global value group V𝑏𝑎𝑑 Realified Frobenoid 𝑐◻ dilate 𝜅-coric rat. func.

{𝑞, Θ}-Pilot object A (global) 𝑐◻-data defined by the local 𝑏◻ at 𝑣 ∈ V𝑏𝑎𝑑 – –
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Topic 3 - Anabelian Geometry

The goal of this section is to present the reconstruction results of absolute mono-anabelian geometry
on which relies the IUT geometry for the variation of the (⊞,⊠)-Ring structures – see more especially
Talk 2.2. Recall that anabelian geometry deals with the Grothendieck Conjecture (GC), i.e. the question
of reconstructing isomorphism classes of schemes from combinatorial and profinite group theoretic data
– that is in its relative and bi-anabelian form, of the bijectivity of Hom𝑘(𝑋, 𝑌 ) → Out𝐺𝑘

(Π𝑋 , Π𝑌 ) for
𝑋, 𝑌 given schemes over 𝑘, and where Π● denotes the étale fundamental group.
A first introductory Talk 3.1 presents the seminal relative bi-anabelian Theorem A of Mochizuki [pGC]
that provides a positive result to GC for hyperbolic curves over sub-𝑝-adic fields. Following the IUT’s
consideration of smooth curves with semistable singular special fibre over non-archimedean fields,
Talk 3.2 presents the basis of André’s tempered fundamental group for rigid analytic spaces [And03],
the main combinatorial anabelian reconstruction results for curves – see [SemiAnbd] Cor. 3.11, as
well as its profinite compatibility – see [IUTChI] Cor. 2.5. Talk 3.3 focuses on the tool of Elliptic
and Belyi cuspidalization of [AbsTopII] that allows, by adding an inertia data to Mochizuki’s Th. A
certain anabelian reconstructions (1) of function and constant fields, and (2) of theta functions and
mono-theta environments [AbsTopIII] & [EtTh] to obtain the rigidity properties of Talk 2.2.

※ These anabelian constructions provide, via the properties of Talk 2.2, the core of the ◻-prime strips – e.g.
for ◻ ∈ {ℱ⊩▶×𝜇,𝒟,𝒟⊢} – then of the Θ±ellNF-Hodge theaters and their 𝒟⊢-bases as in Talk 2.1 and 2.3 and
in Fig. 14. At an elementary anabelian level, it is well-known that non-isomorphic p-adic local fields can have
isomorphic Galois groups; an anabelian defect that can be solved by fixing some additional data – such as the
ramification filtration – whose role can be seen as rigidifying the fluidity of the ⊞-monoidal structure. We refer to
[Jos20] for illustrations of this principle for Galois realisations and elliptic curves, and in terms of IUT, to §1.6
ibid with respect to the Ind1 indeterminacy, and to [Jos19b] ibid in terms of some universal addition law. See
also [Hos16] Rem. 4.3.3 for similar statements more broady directed towards IUT.

TALK 3.1 - RELATIVE BI-ANABELIAN GEOMETRY. For 𝑋 algebraic variety over a field 𝐾, one can
form from the relative morphism 𝑋 → Spec 𝐾 a Fundamental Exact Sequence:

1→Δ𝑋 → Π𝑋 → Gal𝐾 → 1, Homdom
𝐾 (𝑋, 𝑌 ) → Homopen

Gal𝐾(Π𝑋 , Π𝑌 )Δ𝑌
(FES/Hom)

where Π𝑋 denotes the étale fundamental group 𝜋𝑒𝑡
1 (𝑋,∗) and Δ𝑋 < Π𝑋 denotes the kernel of the

projection 𝑝𝑟𝑋 ∶Π𝑋 → 𝐺𝑎𝑙𝐾 , isomorphic to the geometric 𝜋𝑒𝑡
1 (𝑋⊗𝐾̄,∗). Relative bi-anabelian geometry

deals with the question of reconstructing morphisms 𝑋 →𝐾 𝑌 over Spec 𝐾 from Gal𝐾-equivariant
morphisms Π𝑋 → Π𝑌 up to Δ𝑌 -inner automorphisms – i.e. the bijectivity of the RHS in (FES/Hom).
We refer to [pGC] and to [NTM98] for a general presentation.
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§GC for Hyperbolic Curves. After some seminal work of Nakamura and Tamagawa, a fundamental
breakthrough was achieved with Mochizuki Theorem A [pGC] that shifts to 𝑝-adic analytic techniques
over local fields and establishes the bijectivity of (FES/Hom) for smooth hyperbolic curves over sub-𝑝-adic
field 𝐾.
Very roughly the key points of the approach rely on 𝑝-adic Hodge theory and are as follows – see [pGC]:

(i) Global differentials as container. Writing 𝐷𝑋 = 𝐻0(𝑋𝐾 , 𝜔𝑋⇑𝐾), the differentials provide a
potential container 𝑋𝐾 ↪ P(𝐷𝑋), where indeed 𝐷𝑋 ≃ (𝜋(𝑝)1 (𝑋𝐾̄)𝑎𝑏 ⊗C𝑝(1))Gal𝐾 ;

(ii) Arithmetic line bundle. From the existence of an 𝐿-arithmetic line bundle on 𝑌 𝐻 via its Chern
class follows the existence of 𝐿-rational point(s) 𝑥𝐻

𝐿 in 𝑌 𝐻 for every 𝐻 <𝑜𝑝. 𝜋
(𝑝)
1 (𝑋𝐾);

(iii) A geometric 𝛼𝐿∶Gal𝐿 → 𝜋
(𝑝)
1 (𝑋). Considering a certain small 𝑝-adic open set Spec 𝐿 in 𝑋𝐾 , an

argument à la Tamagawa provides the 𝑝-adic convergence of 𝑥𝐻
𝐿 →

𝐻
𝑥∞𝐿 ∈ 𝑋(𝐿) that induces 𝛼𝐿,

and which in turns by Falting’s 𝑝-adic Hodge theory produces Φ𝛼∶Spec 𝐿→ P(𝐷𝑋) over 𝐾 whose
(closure of the) image is 𝑋𝐾 .

We once more refer to [Fal98] and [NTM98] §5.2 for an overview of the proof and details.
§Towards Mono-Anabelian Results. Having in mind the goal of building some IUT mono-anabelian
functorial group-theoretic algorithms, note that for and over 𝐾 a 𝑝-local field, the following data can
indeed be turn-by-turn group-theoretically reconstructed from 𝐺𝐾 , resp. Π𝑋 :

(i) Fields. (i) the data 𝑝, then (︀𝐾 ∶ Q𝑝⌋︀ and 𝑒(𝐾) by local class field theory via 𝐺𝑎𝑏
𝐾 ≃ ⧹︂𝐾× and its

rank, (ii) then 𝐼𝐾 , 𝑃𝐾 and the Frobenius 𝐹𝑟𝑜𝑏𝐾 via 𝑝-log and open sub-groups of 𝐺𝐾 , then the
multiplicative ring 𝐾×, (iii) then 𝐾̄× and 𝜇Q⇑Z(𝐾̄) by Verlangerung, and (iv) the isomorphism
𝐻1(𝐺𝑎𝑙𝐾 , 𝜇Q⇑Z(𝐾̄)) ≃ Q⇑Z – see [AbsAnAb] Prop. 1.2.1 and its proof;

(ii) Hyperbolic Curves of type (𝑔, 𝑟). (i) the kernel Δ < 𝜋1(𝑋, 𝑥̄) by Tamagawa semi-abelian techniques,
and (ii) the data (𝑔, 𝑟) via 𝐹𝑟𝑜𝑏𝑘 and dim(Δ⊗Qℓ) – see [AbsAnAb].

※ By providing some additional inertia data such as given by Belyi/Elliptic cuspidalization, this relative anabelian
result will turn into an absolute one – cf Talk.3.3. In higher dimension, typical anabelian results are established
(1) for configuration spaces of hyperbolic curves first over finitely generated fields of characteristic 0 [Mochizuki,
Nakamura, Takao & Tamagawa] then over sub-𝑝-adic fields [Mochizuki, Hoshi, Minamide], and more recently (2)
for any fundamental system of Zariski neighourhoods of smooth varieties over a number field via étale homotopy
type [Schmidt, Stix 2016], and (3) idem but for polycurves over any sub-𝑝-adic field [Hoshi 2018].

TALK 3.2 - TEMPERED ANABELIAN GEOMETRY. IUT deals with the rigid analytic geometry of elliptic
curves 𝐸(𝑘𝑣)𝑟𝑖𝑔 ≃ G𝑟𝑖𝑔

𝑚 ⇑𝑞Z𝑣 and their symmetries via the local Tate parameter 𝑞𝑣 ∈ 𝑘𝑣 at places of
bad multiplicative reduction – alt. the values of a certain étale 𝑝-adic theta function, see Talk 2.2.
The anabelian context is here provided by André’s tempered fundamental group 𝜋temp

1 (𝑋, 𝑥) – see
[And03] §4-5 for an introduction and [SemiAnbd] Ex. 3.10 for a reformulation in terms of log-smooth
curves – that is (1) functorial, (2) provides discrete covers over singular base à la SGA3, comes with a
(FES/Hom), and (3) is étale compatible – e.g. ⧹︂𝜋temp

1 (𝑋) ≃ 𝜋𝑒𝑡
1 (𝑋) .

§Combinatorial Tempered Anabelian Geometry. Anabelian principles are those of combinatorial
anabelian geometry, that encodes the anabelian properties – 𝜋temp

1 (𝑋), decomposition and inertia
groups – of smooth pointed hyperbolic curves in certain semigraphs (or temperoids 𝒢) of branches,
vertices and edges representing the dual semi-graph of one of their semistable models – see [Lep10]
§1.2 for an introduction.
In this context the two key reconstruction results for log-smooth curve over 𝑝-adic local field are:

(i) 2-classes of semigraphs of anabelioids are recovered via isomorphisms of their tempered fundamental
groups, [SemiAnbd] Cor. 3.11;
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(ii) the verticial subgroups (resp. edge-like subgroups) of 𝜋temp
1 (𝒢) are exactly the maximal compact

subgroups of 𝜋temp
1 (𝒢) (resp. non-trivial intersection of), ibid. Th. 3.7 (iv)

i.e. combinatorial anabelian geometry has no “fake inertial/decomposition groups”.

§Tempered & Pro-conjugate. Considering Πtemp
𝑋 ↪ Π𝑒𝑡

𝑋 , the following result allows in IUT the
synchronisation of the {±1}-indeterminacies associated to various valuations in Θ±ellNF-Hodge theaters
in Fig. 5 – see [IUTChI] Cor. 2.5:

(i) an inertia subgroup of ⧹︂Π𝑋 associated to a cusp of 𝑋 is in Πtemp
𝑋 if and only if it is an inertia

subgroup of Πtemp
𝑋 ;

(ii) the only ⧹︂Π𝑋 -conjugate of Πtemp
𝑋 containing an inertia group of Πtemp

𝑋 is Πtemp
𝑋 itself.

Following ibid. Rem. 2.5.1 this result can be seen as a certain “relative tempered-profinite” Section
Conjecture.

TALK 3.3 - IUT ABSOLUTE MONO-ANABELIAN RECONSTRUCTIONS. As encountered in Talk 2.2,
anabelian reconstructions in IUT are essentially absolute and mono-anabelian – i.e. deal, for a given

Relative
anabelian

Th. A
+ Ell.-Belyi

Cuspidaliz.

Absolute
anabelian

IUT

topological group Π, abstractly isomorphic to some Π𝑋 , with the
reconstruction of 𝑋 by a group-theoretic algorithm. Over 𝑘 MLF, they
are of 2 types: (1) with respect to the function field 𝐾𝑋 , and (2)
with respect to étale theta-functions of elliptic orbicurves. In these
situations, a key obstruction to anabelianity lays in the lack of terminal
object – or 𝑘-core – in a certain category Loc𝑘(𝑋) of finite étale covers,
see [AbsTopII] Def. 3.1 & [Moc03a] §2.

The consideration of hyperbolic orbicurves that are of strict Belyi types or elliptically admissible
resolves this obstruction. By providing some additional inertia group data to Mochizuki Th. A of
Talk 3.1 in terms of Belyi/elliptic cuspidalization – see [AbsTopIII] Rem. 1.11.1 (i), it provides first
some intermediate anabelian reconstructions, which in turns recovers by Kummer theory our objects in
some anabelianly rebuilt étale containers – e.g. 𝑘× ↪𝐻1(𝐺(Π), Λ(Π)), Γ(𝑈,𝒪×𝑈) ↪𝐻1(𝜋𝑈 , 𝜇⧹︂Z(𝜋𝑋)),
or {Z − 𝑜𝑟𝑏𝑖𝑡 𝑜𝑓 é𝑡𝑎𝑙𝑒 𝑡ℎ𝑒𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠} ↪𝐻1(Πtemp

𝑌
, ΔΘ) below.

※ Mono-anabelian obstacle for MLF: there exists (𝑘1, 𝑘2) MLFs such that 𝐺𝑘1 ≃ 𝐺𝑘2 and 𝑘1 ≄ 𝑘2. For case
(i) ibid. i.e. the mono-anabelian reconstruction for a given Π ↷ 𝑀 of the {±1}-orbits (resp. ⧹︂Z×-orbits) of
𝜇⧹︂Z(𝑀) ∼→ 𝜇(Π) for (Π↷𝑀) ≃ (𝐺𝑘 ↷ 𝑘×) (resp. (Π↷𝑀) ≃ (𝐺𝑘 ↷ 𝒪×̄

𝑘
)) via LCFT [AbsTopIII] Prop. 3.3 (i).

§Hidden Symmetries and Elliptic-Belyi Cuspidalisation. The following notions for hyperbolic
orbicurves guarantee the reconstruction of decomposition groups of closed points of 𝑋 in Π𝑋 , which is
the first step in the reconstruction of 𝐾𝑋 . Fig. 16. Elliptic Hidden Symme-

tries.
𝐸𝑁 𝑈𝑋,𝑁

𝑈𝐶,𝑁

𝐸× 𝑋

𝐶

𝑒𝑡.

Fig. 17. Belyi Cuspidalization - up
to base field extension.

𝑉 𝑈𝑋

P1 ∖𝐷

𝑋

𝑓.𝑒𝑡.

𝑓𝑖𝑛.

𝑒𝑡.

𝑜𝑝.

∃ 𝑓𝑖𝑛.

𝑒𝑡.

A hyperbolic orbicurve 𝑋 over 𝑘 of characteristic 0 is said to be:
(i) elliptically admissible if it admits a 𝑘-core 𝑋 → 𝐶 where 𝐶 is the

stack-quotient 𝐶 ≃ 𝐸 ∖ {0}⇑⇑{±1} for some elliptic curve 𝐸 over
𝑘;

(ii) of strict Belyi type if defined over a NF and isogenous to a genus
0 curve.

In the first case, denoting 𝐸× = 𝐸 ∖ {0}, 𝐸𝑁 = 𝐸 ∖ 𝐸(︀𝑁⌋︀, 𝑈𝐶,𝑁 =
𝐸𝑁⇑⇑{±1}, and 𝑈𝑋,𝑁 base change as in [Yam17] §3.2.1 – Fig. 16
illustrates how the hidden symmetries of 𝑁 -torsion points of 𝐸 provides
some open immersions 𝑈𝑋,𝑁 ↪𝑋 as finite étale morphisms [AbsTopII]
Def. 3.1; A similar context is provided by orbicurves of strict Belyi
types, see Fig. 17, where the left column is given by definition and
the right one follows the existence of Belyi maps, [AbsTopII] Ex. 3.2.

Version 1 − 𝜀 - 04/19/2021 19/26



RIMS Kyoto University - Lille University 2020-2021

In both cases, for 𝑋 and 𝑈𝑋,(𝑁) given, one recovers from Δ𝑋 < Π𝑋

and from the Belyi (resp. Elliptic) Cuspidalizations {Π𝑈𝑋
→ Π𝑋}𝑈𝑋↪𝑋 (resp. {Π𝑈𝑋,𝑁

→ Π𝑋}𝑈𝑋,𝑁↪𝑋)
the set of decompositions groups at the points of 𝑋 ∖𝑈𝑋,𝑁 , see [AbsTopII] Cor. 3.7 (resp. [AbsTopIII]
Cor. 3.3).
※ Note (1) that the existence of a Belyi map from a pointed elliptic curve to
P1 ∖ {0, 1,∞} presents any elliptically admissible orbicurve over a NF as being
of strict Belyi type [AbsTopIII] Rem. 2.8.3, and (2) that similar constructions
do not hold for 𝑔 > 1. We refer to [AbsTopII] Cor. 3.3 & 3.7 (resp. Rem. 3.3.3
& 3.7.1) for further anabelian reconstructions with respect to elliptical & Belyi
type curves (resp. for Πtemp

𝑋 ).

Fig. 18. Elliptic to Belyi.

𝐸 ∖𝐸(︀2⌋︀ 𝐸{0}

P1 ∖ {0, 1,∞, 𝜆}

×2

𝑖𝑛𝑣.

§Absolute Mono-anabelian Reconstructions (1). Let us briefly present step by step how the
strict Belyi type provides the anabelian reconstruction over MLF of the function field 𝐾𝑋 and of the
base field 𝑘, see [AbsTopIII] Th 1.9. We denote by 𝑆 < 𝑋 a finite set of closed points, write 𝑈 = 𝑋 ∖ 𝑆
and equivalently 𝑀𝑋 or 𝜇⧹︂Z(𝜋𝑋).

(i) Inertia and decomposition groups. Belyi cuspidalization reconstructs respectively the decomposi-
tion groups 𝐷𝑥 then the inertia groups 𝐼𝑥 = 𝐷𝑥 ∩Δ𝑈 of 𝐼𝑥 < 𝜋1(𝑋 ∖𝑈);

(ii) Synchronization of geometric cyclotomes. On obtains a cyclotomic rigidity isomorphism, i.e. a
canonical identification 𝜇⧹︂Z(𝜋𝑈) ≃ 𝐼𝑥 ≃ ⧹︂Z(1) of for every 𝑥 ∈ 𝑈 , see [AbsTopIII] Prop. 1.4;

(iii) Multiplicative group 𝐾×
𝑋 and 𝑘×. The reconstruction of principal divisors and the Kummer map

𝜅𝑈 ∶Γ(𝑈,𝒪×𝑈) ↪𝐻1(𝜋𝑈 , 𝜇⧹︂Z(𝜋𝑋)) provide the reconstruction of 𝑘× < 𝐾𝑋,𝑘 ↪ lim𝑆,𝑘′ 𝐻
1(𝜋𝑋∖𝑆 , 𝜇⧹︂Z(𝜋𝑈));

ibid Prop. 1.6 & 1.8;
(iv) Fields 𝐾𝑋 and 𝑘. By Uchida’s Lemma ibid. Prop. 1.3, the additive structure of 𝐾×

𝑋 ∪ {0} is
recovered from the set of valuations and from 𝐾×

𝑋 .
These constructions steps indeed first go through the ones of the number field part 𝑘𝑁𝐹 of 𝑘, and rely
on some additional similar constructions with respect to the maximal abelian cuspidalization Π𝑐−𝑎𝑏

𝑈 of
Π𝑈 , and the Kummer 𝑘× ↪𝐻1(𝐺𝑘, 𝜇⧹︂Z(𝜋𝑋)) ↪𝐻1(𝜋𝑋 , 𝜇⧹︂Z(𝜋𝑋)) – see ibid. Cor. 1.10 (ii) (d) and (iii)
(e)-(h). Note also the synchronization of cyclotomes in (ii) which allows to reconstruct a container
𝐻1(Π, 𝑀) ≃ 𝐻1(Π𝑋 , 𝑀𝑋).
§Absolute Mono-anabelian Reconstructions (2). We now deal with the anabelian reconstruction
of the étale theta function and Mono-theta environments with respect to the tempered fundametal
group of Talk 3.2 and [SemiAnbd]. Let thus 𝑘 be a 𝑝-adic local field – ie (︀𝑘∶Q𝑝⌋︀ < ∞ –, and 𝑋⇑𝑘 be an
elliptic curve with split multiplicative reduction over 𝒪𝑘.

Fig. 19. Covers for Θ and Θ1⇑ℓ.

𝑌 𝑌

𝑌 𝑌

𝑋 𝑋 𝑋

𝐶 𝐶

𝜇ℓ

𝜇2 𝜇2

ℓZ
Z

𝜇ℓ

𝑑𝑒𝑔 ℓ

Let us assume given Π a fixed topological group – abstractly corre-
sponding to Πtemp

𝑋 . Then some functorial group-theoretic algorithm
recovers:

(i) Coverings. The various covers {𝑌 , 𝑌, 𝑋, 𝑌 , 𝑌 , 𝑋, . . .} involved in
Fig. 12 & 19, see [EtTh] Prop. 2.4;

(ii) Étale Theta Functions. The topological groups 𝐺(Π) and ΔΘ,
and thus a certain subset of cohomological classes in the container
𝐻1(Πtemp

𝑌
, ΔΘ) that corresponds to the Z-orbit of the étale theta

function 𝒪×
𝐾̈

.𝜂Θ(Π), see ibid. Th 1.6;
(iii) Mono-theta environement MΘ(Π). See ibid. Cor. 2.18 (ii) & (iii);

Note that these steps also recover, via the cohomological class 𝜂Θ ∈ 𝐻1(Πtemp
𝑌

, ℓ.ΔΘ), a ℓ-root of the
étale theta function, see Fig. above.
※ The constant multiple rigidity of Talk 2.2 §The mono-theta environment follows from elliptic cuspidalization,
see [EtTh] Cor. 2.19 (iii), which moreover gives reconstruction results for Archimedean places [AbsTopIII]
Cor. 2.7 & 2.9. For mono-anabelian reconstructions over MLF and of “MLF pair” 𝐺↷𝑀 , we also refer to the
synthetic [Hos16] – esp. Summaries 3.15 & 4.3.
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Topic 4 - Advanced Talks

ATA - Mono-anabelian Transport in Inter-universal Teichmüller Theory Y. Hoshi
Abstract: In this talk, I first give a brief review of the content of the main theorem of inter-universal
Teichmuller theory from the point of view of mono-anabelian transport. After the review, I also explain
the relationship between the main theorem and an inequality of log-volumes.

ATB - Explicit Estimates in Inter-universal Teichmüller Theory A. Minamide
Abstract: In the final paper of a series of papers concerning inter-universal Teichmuller theory, Mochizuki
verified various numerically non-effective versions of the Vojta, ABC, and Szpiro Conjectures over
number fields. In this talk, we will give various numerically effective versions of Mochizuki’s results.
This is joint work with S. Mochizuki, I. Fesenko, Y. Hoshi, and W. Porowski.

ATC - An Introduction to 𝑝-adic Teichmüller Theory Y. Wakabayashi
Abstract: This talk aims to give an introductory exposition of 𝑝-adic Teichmüller theory. In a series of
papers on IUT, S. Mochizuki refers that theory from the viewpoint of the analogy with IUT. Relative
to this analogy, (one-punctured) elliptic curves over a number field correspond to “nilpotent ordinary
indigenous bundles” over a hyperbolic curve in positive characteristic. Nilpotent ordinary indigenous
bundles play essential roles in 𝑝-adic Teichmüller theory because they are used to construct 𝑝-adic
canonical liftings of the underlying curves. In this talk, I would like to talk about these objects and
related topics from the beginning.
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Interactive Q&A Session on the Essential Logical Structure of Inter-universal Teichmüller The-
ory S. Mochizuki
Abstract: Introductory lectures and expositions on inter-universal Teichmüller theory — such as, for
instance, [Alien] — have a tendency to concentrate on exposing the technical details surrounding
the various mathematical objects that appear in the theory. To a certain extent, of course, this is
unavoidable. On the other hand, concentrating on such technical details can lead to a situation where
one is overwhelmed with seemingly meaningless technicalities to such an extent that one loses sight of
the essential logical structure of the theory.
The purpose of this session will be to discuss, in as interactive a fashion as is possible, this essential
logical structure of the theory, as exposed in [EssLgcIUT] (cf., especially, §3.3, §3.10, §3.11). The
discussion will center around the following topics (not necessarily in the following order):
(T1) logical AND "∧" versus logical OR "∨" and the use of distinct labels,
(T2) dilated versus nondilated dimensions and the analogy with classical complex Teichmüller theory,
(T3) the theta-OR indeterminacy ("(ΘORInd)") versus the log-OR indeterminacy ("(logORInd)"),
(T4) the symmetries/nonsymmetries and coricities of the Frobenius-like/étale-like portions of the
log-theta-lattice,
(T5) the Kummer theory relating Frobenius-like and étale-like structures and the resulting Kummer-
detachment indeterminacies,
(T6) the significance of the theta function and the analogy with the Jacobi identity of the theta function,
(T7) the central importance of the log-Kummer-correspondence (and Galois evaluation) and the (Ind3)
indeterminacy,
(T8) the importance of simulating — via the combinatorial structure of a Hodge theater — a global
multiplicative subspace (GMS) and global canonical generator (GCG),
(T9) the importance of conjugate synchronization and the relationship with the Kummer theory of the
theta function.
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ORGANIZATION AND SCHEDULE

Website of the
Seminar.

The seminar takes place every two weeks for ∼ 2 hours on Thursday by Zoom meeting
between 17:30-19:30, JP time – 6:30pm and 8:30pm during the European winter time
November-March – i.e. 9:30-11:30, UK time, and 10:30-12:30 FR time.

Note that in order to ensure a cohesive and focused working group, participation is
restricted to a limited number of participants, and that registration is done by
invitation only.

Speakers will give their presentation either:
(a) by video conferencing and black board,
(b) by a Zoom shared whiteboard via (graphic) tablet.

The audience will attend the talk (a’) globally via a screening with video projector or (b’) individually
via Zoom. Questions will be submitted to the speaker either by chat or verbally.

A temporary private Slack group chat “[RIMS-Lille] IUT” has been setup for sharing resources,
questions and informal discussions – participants are automatically invited.

The website of the seminar with updated schedule, list of participants, and references can be found
following the above QR-clickable link.

※ We refer to RIMS - Homotopical Anabelian Geometry Seminar and for RIMS - Homotopical Arithmetic
Geometry Seminar - 7 Topics for software and hardware references.

Organizational Meeting (Talk 0 on Sept. 24, 2020). An organization meeting will take place
for giving a complete overview of this guide and for distributing-confirming the speakers and slots talk.

TALKS AND SPEAKERS. If required speakers can use a double or a shared slot for their talk.

September
0. 24th T0 Collas RIMS - Japan
October
1. 8th T1.1 Cluckers

–
Fresse

Lille - France

2. 29th T3.1 PorowskiNottingham - UK
November
3. 5th T1.2* Dèbes Lille - France
4. 19th T3.2 Tsujimura RIMS - Japan
December
5. 3rd T1.3 Liu Bordeaux - France
6. 17th T2.1 Minamide RIMS - Japan

January
7. 21th T2.2 Porowski Nottingham - UK
February
8. 4th T3.3 Sawada Osaka - Japan
9. 18th T2.3 Minamide RIMS - Japan
March
10. 18th Q&A Mochizuki RIMS - Japan
11. 25th ATA Hoshi RIMS - Japan
April
12. 8th ATB Minamide RIMS - Japan
13. 22th ATC WakabayashiTokyo - Japan

The order of talks will be adapted following the availability of the speakers. (*) Mochizuki at Berkeley Colloquium 4:10pm
to 5:00pm (PST-US) – i.e 1:10 to 2:00 (CET-FR); 9:10am to 10:00am (JST-JP).

Advanced Talks. Following the participants, some dedicated talks are given by experts of the field on
(ATA) some absolute mono-anabelian geometry aspects, (ATB) Recent developments and application
of IUT, and (ATC) 𝑝-adic Teichmüller Theory.
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LIST OF PARTICIPANTS (36). Participants who have so far declared their interest in attending or giving
a talk.

(i) Seguin Béranger, Lille University, France;
(ii) Niels Borne, Lille University, France;
(iii) Raf Cluckers, CNRS Lille University, France & KU Leuven, Belgium;
(iv) Benjamin Collas, RIMS - Kyoto University, Japan;
(v) Weronika Czerniawska, University of Geneva, Switzerland;
(vi) Pierre Dèbes, Lille University, France;
(vii) Ivan Fesenko, Nottingham University, UK;
(viii) Benoit Fresse, Lille University, France;
(ix) Yuta Hatasa, Tokyo Institute of Technology, Japan;
(x) Julien Hauseux, Lille University, France;
(xi) Watanabe Hiroyuki, RIMS - Kyoto University, Japan;
(xii) Yuichiro Hoshi, RIMS - Kyoto University, Japan;
(xiii) Angelo Iadarola, Lille University, France;
(xiv) Shun Ishii, RIMS - Kyoto University, Japan;
(xv) Fumiharu Kato, Tokyo Institute of Technology, Japan;
(xvi) Qing Liu, Bordeaux University, France;
(xvii) Arata Minamide, RIMS - Kyoto University, Japan;
(xviii) Shinichi Mochizuki, RIMS - Kyoto, Japan;
(xix) Katharina Müller, University Göttingen, Germany;
(xx) Wojciech Porowski, Nottingham University, UK:
(xxi) Lorenzo Ramero, Lille University, France;
(xxii) Koichiro Sawada, Osaka University, Japan;
(xxiii) Ryoji Shimizu, RIMS - Kyoto University, Japan;
(xxiv) Masatoshi Suzuki, Tokyo Institute of Technology, Japan;
(xxv) Christian Tafula Santos, Université de Montréal, Canada;
(xxvi) Yuichiro Taguchi, Tokyo Institute of Technology, Japan;
(xxvii) Shota Tsujimura, RIMS - Kyoto University, Japan;
(xxviii) Yasuhiro Wakabayashi, Tokyo Institute of Technology, Japan;
(xxix) Naganori Yamaguchi, RIMS - Kyoto University, Japan;
(xxx) Yu Yang, RIMS - Kyoto University, Japan;
(xxxi) Seidai Yasuda, Osaka University, Japan;
(xxxii) Yu Yasufuku, Nihon University, Japan;
(xxxiii) Shigetoshi Yokoyama, Gunma University, Japan;
(xxxiv) Harumichi Yoshiura, Tokyo Institute of Technology, Japan;
(xxxv) Takao Yuyama, Tokyo Institute of Technology, Japan;
(xxxvi) Mou Zhuoqun, RIMS - Kyoto University, Japan.
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